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Abstract—This paper starts by assuming a 1-2-1 network, the
abstracted noiseless model of mmWave networks that was shown
to closely approximate the Gaussian capacity in [1], and studies
secure communication. First, the secure capacity is derived for 1-
2-1 networks where a source is connected to a destination through
a network of unit capacity links. Then, lower and upper bounds
on the secure capacity are derived for the case when source
and destination have more than one beam, which allow them
to transmit and receive in multiple directions at a time. Finally,
secure capacity results are presented for diamond 1-2-1 networks
when edges have different capacities.

I. INTRODUCTION

High-frequency communication, such as mmWave and Thz,

can enable multi-gigabit communication, albeit at relatively

short range, and with the help of beamforming to compensate

for high path loss. To cover large areas, such as commercial

buildings, requires deploying networks of relays that commu-

nicate through directional beams. In [1], the authors derived

a model for high-frequency communication networks, that

they termed Gaussian 1-2-1 networks, and presented capacity

results as well as information flow algorithms. In this paper,

we start by assuming a 1-2-1 network, namely the abstracted

model for networks with directional antenna setups which was

studied for Gaussian networks in [1]. Here, we study secure

message communication over such networks.

The 1-2-1 model abstracts directivity: to establish a com-

munication link, both the mmWave transmitter and receiver

employ antenna arrays that they electronically steer to direct

their beams towards each other - termed as 1-2-1 link, as both

nodes need to focus their beams to face each other for the link

to be active. Thus, in 1-2-1 networks, instead of broadcasting

or interference, we have coordinated steering of transmit and

receive beams to activate different links at each time.

We now review a fundamental result in network security,

and then discuss how this changes over 1-2-1 networks.

Consider a source, Alice, connected to a destination, Bob,

through an arbitrary traditional network represented as a graph

with unit capacity lossless links, and assume that the min-cut

between the source and the destination equals H . That is, we

can find H edge-disjoint unit capacity paths that connect the

source to the destination. Assume that a passive eavesdropper,

Eve, wiretaps any K links of the communication network.
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Alice can then securely (in the strong information theoretical

sense) communicate at rate H − K with the destination,

by conveying linear combinations of K keys with H − K
information messages [2]. The rate H−K is exactly the secure

message capacity1 - we cannot hope to do better.

In 1-2-1 networks of unit capacity edges, it turns out that

even if the 1-2-1 min-cut is H , i.e., the maximum flow using

mmWave communication is H , and Eve eavesdrops any K
edges, we may be able to securely communicate at rates higher

than H −K. Consider for example a diamond network with

N relays shown in Fig. 1(c) with all edges of unit capacity:

the unsecure communication capacity equals one - we cannot

do better than rate one because Alice can beamform and

transmit information to only one relay at each time, and it

does not matter which relay she communicates with, since we

assumed that all links have unit capacity. Assume that Eve

wiretaps any one edge. That is, we have H = 1 and K = 1,

which over traditional networks would result in a zero secure

communication rate. However, Alice can change which relay

she communicates with over time; in fact, she can devote a

fraction 1
N of her time to send information to Bob over any one

out of the N unit capacity paths that connect them. Since Eve

will only be observing one of these paths, as we formally show

in Section III, Alice can securely communicate at rate of 1− 1
N .

That is, over 1-2-1 networks, we can leverage the fact that we

may have many possible choices of paths to communicate at

rates much higher than H −K.

Main Contributions. (a) We consider arbitrary 1-2-1 networks

with unit capacity edges, where Eve wiretaps any K edges,

and derive lower and upper bounds on the capacity, that are

tight for some networks. (b) We derive the secure message

capacity for the case where the source is connected to the

destination through one layer of non-interfering relays (i.e.,

diamond network), where now each path from the source to

the destination can have arbitrary capacity.

Related Work. In our work, we essentially leverage directivity

and multipath for security, over a “lossless” network model.

The fact that directivity can help with security has been

observed in the context of MIMO beamforming, see [3] and

later work [4]; in these works, the main observation is that,

by creating a narrow beam, we limit the locations where the

1This holds under some standard assumptions in the literature [2], in
particular under the assumption that only Alice can generate randomness.
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adversary Eve can collect useful information - or at least,

significantly weaken her channel, so as to utilize wiretap

coding. However, to the best of our knowledge, these ideas

have not been extended to networks. Exploiting multipath for

security over lossless networks with unit capacity links has

notably been used in secure network coding [2]. This was

followed by a number of works such as [5], [6], [7], [8].

For edges with non-uniform capacities, Cui et al. [9] designed

a secure achievable scheme. These results however, consider

only the “traditional network”, where a node can communicate

to other nodes using all the edges it is connected with, and not

1-2-1 networks where a node with one beam can only transmit

to one among its neighbors at each point in time.

Paper Organization. Section II presents the 1-2-1 network

model and results on the unsecure capacity for arbitrary

networks with unit edge capacities. Section III contains secure

capacity results for arbitrary networks with unit edge capac-

ities and Section IV presents our secure capacity results for

diamond networks with arbitrary edge capacities. Section V

concludes the paper.

II. SYSTEM MODEL AND UNSECURE CAPACITY

Notation. [m] := {1, 2, . . . , m}, [a : b] is the set of integers

from a to b ≥ a and A[m] = {A1, A2, A3, . . . , Am}.

1-2-1 Model. The work in [1] examined the unsecure capacity

characterization of the Gaussian mmWave network by mod-

eling it as a 1-2-1 network. In [1], it was shown that the

capacity of a Gaussian 1-2-1 network can be approximately

characterized to within a constant gap by a lossless 1-2-1 net-

work where the schedule does not depend on the transmitted

messages in the network. In this paper, we examine security

over such 1-2-1 networks, that we describe next. We consider

a source connected to a destination through a directed graph

G = (V,E) with edges of fixed finite capacities, where each

link can be activated according to the 1-2-1 constraints. That is,

at any particular time, an intermediate node can simultaneously

receive and transmit but it can at most listen to one node

(one incoming edge) and direct its transmission to one node

(one outgoing edge) in the network. In this paper, the source

(respectively, destination) can transmit to (respectively, receive

from) M other nodes i.e., on M outgoing edges (respectively,

on M incoming edges), simultaneously with no interference.

The network follows a deterministic designed schedule that

does not change with the transmitted message.

Adversary Model and Security. We assume that the source

wishes to communicate a message W of entropy rate R
securely from a passive external adversary Eve who can

wiretap any K edges of her choice.

If Eve wiretaps edges in the set S ⊆ E, |S| = K, and the

symbols transmitted on these edges over n network uses are

denoted by {Tn
e , e ∈ S}, then we require that:

I(W ; {Tn
e , e ∈ S}) ≤ ǫ, ∀S ⊆ E, |S| = K. (1)

We are interested in characterizing the secure message ca-

pacity C, that is the maximum rate at which the source can

communicate with the destination with zero error under (1).

Unsecure Capacity: Here, we derive the capacity in the

absence of the eavesdropper Eve. 1-2-1 networks with arbitrary

edge capacities and M = 1, under Gaussian channel models

were analyzed in [1], where the main result is that over

such networks, one can approximately (i.e., up to a gap

that only depends on the number of nodes) achieve the

capacity by routing information across paths; moreover, out

of an exponential number of paths that potentially connect the

source to the destination, capacity can be achieved by utilizing

at most a linear number (in the number of nodes) of them. In

this section, we derive an additional result, namely the exact

capacity for any M when all the edges are of unit capacity.

Theorem 1. For arbitrary 1-2-1 networks with unit capacity

edges, the capacity in absence of Eve is given by,

Cu = min(M,Hv), (2)

where Hv is the maximum number of vertex disjoint paths.

Proof: Achievability: Let p[Hv ] be the Hv vertex disjoint

paths. These paths are of fundamental importance under the

1-2-1 constraints. This is because intermediate nodes can

transmit and receive from only one node each, and this ensures

that multiple vertex disjoint paths (depending on the number of

source and destination beams) can be simultaneously operated

at each time. We pick min(M,Hv) such paths and use these

for the transmission and thus achieve a rate of min(M,Hv).
Outer Bound: Whenever there are direct edges from the

source to the destination, we add a virtual node in between,

so that a direct edge turns into a two-hop path. This does not

change the transmission rate as if there was a transmission on

the direct edge in G, it can also be performed using the added

virtual node with no extra resources. Thus, we can assume that

there are no direct edges from the source to the destination.

Now, we consider the minimum vertex cut of the network,

i.e., the minimum number of vertices (excluding the source and

the destination), such that when we remove them there is no

path from the source to the destination. This minimum number

of vertices is equal to the maximum number of vertex disjoint

paths, i.e., Hv . We denote these vertices as V1, V2, , . . . , VHv
.

Each of these intermediate nodes can transmit only on one of

its outgoing edges. We denote the symbols transmitted on the

outgoing edges of these nodes over n network uses as Tn
V[Hv ]

,

where Tn
Vi

denotes the symbols transmitted by vertex Vi. We

represent the symbols received by the destination as Tn
D.

By Fano’s inequality, we obtain

(1) nR ≤ H(W )
(a)
= H(W )−H(W |Tn

D)

(b)

≤ H(W )−H(W |Tn
V[Hv ]

)

= I(W ;Tn
V[Hv ]

) ≤ H(Tn
V[Hv ]

)
(c)

≤ nHv,

(2) nR ≤ H(W )−H(W |Tn
D) = I(W ;Tn

D)

≤ H(Tn
D)

(d)

≤ Mn,

where (a) is due to the reliable decoding constraint; (b)
follows from the ‘conditioning does not increase the entropy’
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principle and since V[Hv ] is a vertex cut and thus all the

information going to the destination passes through these

vertices (i.e., Tn
D is a deterministic function of Tn

V[Hv ]
); (c)

is because there are Hv symbols for every instance and there

are n such instances; and (d) holds because the destination

can receive only on M incoming edges from M nodes.

III. ARBITRARY NETWORKS WITH UNIT LINK CAPACITY

In this section, we prove lower and upper bounds on the

secure capacity.

Theorem 2. Consider an arbitrary 1-2-1 network with unit

capacity edges.

(a) For M = 1: If He is the maximum number of edge

disjoint paths connecting the source to the destination

on the underlying graph, then the 1-2-1 secure capacity

C can be lower bounded as follows:

C ≥

(

1−
K

He

)

. (3)

(b) For M > 1: If Hv is the maximum number of vertex

disjoint paths connecting the source to the destination

on the underlying graph, then the 1-2-1 secure capacity

C can be lower bounded as follows:

C ≥ min(M,Hv)

(

1−
K

Hv

)

. (4)

Proof. The main intuition behind the proof is that we can

apply the optimal secure communication scheme we would

have used on the underlying graph if we did not have the

1-2-1 constraints, and then use this scheme under the 1-2-1

constraints, as described in what follows.

(a) For M = 1: Let p[He] be the edge disjoint paths. We

start by generating K uniform random packets and make He

linear combinations of these using an MDS code matrix of

size K ×He. We denote these packets as X[He], and refer to

them as “keys”. Any K of these combinations are mutually

independent. Next, we take He−K message packets, and add

(i.e., encode) these with the first He −K random packets. In

other words, after this coding operation we obtain

Ti =

{

Wi +Xi if i ≤ He −K,
Xi else,

where W[He−K] are message packets.

We use the network He times, and in each instance we

use one of the paths from p[He]. Thus, we would be able

to communicate all encoded symbols in He time instances.

Moreover, the destination will be able to cancel out the keys

and thereby decode He−K messages, as there are K symbols

T[He−K+1:THe
], which are just independent combinations of

the K random packets we started with.

Moreover, in each instance, Eve will receive a symbol if

the edges she eavesdrops are part of the path that is used in

that particular instance. Since her K edges can at most be

part of K paths, Eve will receive at most K symbols, all of

which are encoded with independent keys. Thus, the scheme

securely transmits He−K message packets in He uses of the

network. Hence, we get a rate R = He−K
He

= 1 − K
He

, which

is precisely the one in (3). Note that security follows from the

security of the underlying scheme, that is a standard scheme

for multipath security.

(b) For M > 1: Let p[Hv ] be the vertex disjoint paths. Again,

the fact that paths are vertex disjoint is crucial under the 1-2-

1 constraints. This is because intermediate nodes can transmit

and receive from only one node each, and this ensures that

min(M,Hv) paths can be simultaneously operated at each

time (note that having vertex disjoint paths is a sufficient but

not a necessary condition).

Let M̂ = min(M,Hv). We start by generating K
(Hv−1

M̂−1

)

random packets and extend them to M̂
(Hv

M̂

)

packets using an

MDS code matrix. Then, similar to the case M = 1, we

take the first M̂
(Hv

M̂

)

− K
(Hv−1

M̂−1

)

of these random packets

and add (i.e., encode) them with the same amount of message

packets. More formally, if
{

Xi, i∈
[

M̂
(Hv

M̂

)

]}

are the random

packets after the extension using the MDS code matrix, and
{

Wi, i∈
[

M̂
(Hv

M̂

)

−K
(Hv−1

M̂−1

)

]}

are the message packets, then

Ti =

{

Xi +Wi if i ≤ M̂
(Hv

M̂

)

−K
(Hv−1

M̂−1

)

Xi else
.

We use this network
(Hv

M̂

)

times, and in each instance we use a

different choice of M̂ paths to communicate. It is not difficult

to see that each of the K edges eavesdropped by the adversary

will intersect with
(Hv−1

M̂−1

)

such network uses. This is because,

for a fixed choice of edge, there are
(Hv−1

M̂−1

)

network instances

where a symbol in carried via this edge. Hence, in total

the adversary will receive only K
(Hv−1

M̂−1

)

symbols, which are

encoded with independent keys. The receiver, after the
(Hv

M̂

)

network uses will be able to cancel out the keys. Thus, we can

securely communicate M̂
(Hv

M̂

)

−K
(Hv−1

M̂−1

)

over
(Hv

M̂

)

instances

of the network, and achieve a rate R equal to

R =
M̂

(Hv

M̂

)

−K
(Hv−1

M̂−1

)

(Hv

M̂

)

= M̂ −
KM̂

Hv

= min(M,Hv)

(

1−
K

Hv

)

,

which is precisely the one in (4). This concludes the proof of

Theorem 2.

Theorem 3. Let He be the maximum number of edge disjoint

paths connecting the source to the destination on the under-

lying directed graph, then the 1-2-1 secure capacity C can be

upper bounded as follows:

C ≤ min(M,He)

(

1−
K

He

)

.

Proof. From the min-cut, max-flow theorem there are He

edges such that, when removed, the source gets disconnected

from the destination. Let e1, e2, . . . , eHe
denote these

edges. Assume that the network is used n times, and let
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Tn
ei , i ∈ {1, 2, . . . , He} be the symbols transmitted on these

He edges over n uses of the network. By denoting the symbols

transmitted by the source on n network instances by Tn
S , then,

nM ≥ H(Tn
S )

(a)
= H(Tn

S , {T
n
ei , i ∈ [He]})

≥ H({Tn
ei , i ∈ [He]}),

where (a) follows because {Tn
ei , i ∈ [He]} is a deterministic

function of Tn
S . Moreover, H({Tn

ei , i ∈ [He]}) ≤ nHe. Thus,

H({Tn
ei , i ∈ [He]}) ≤ min(nHe, nM). (5)

In the remaining part of the proof, we use the result in the

following lemma, which is proved in the Appendix of a longer

version of this paper [10].

Lemma 1. ∀m, ℓ ∈ Z, 0 ≤ m ≤ ℓ, ∃ S ⊂ [ℓ], |S| = m, such

that H({Xi, i ∈ Sc}|{Xi, i ∈ S}) ≤ ℓ−m
ℓ H(X[ℓ]).

For m = K and ℓ = He, we assume S = [K] ⊂ [He] in

Lemma 1. Then, starting with Fano’s inequality, we have

nR ≤ H(W ) = H(W )−H(W |{Tn
ei , i ∈ [He]})

= I(W ; {Tn
ei , i ∈ [He]})

= I(W ; {Tn
ei , i ∈ [K]})+

I(W ; {Tn
ei , i ∈ [He] \ [K]}|{Tn

ei , i ∈ [K]})

(a)

≤ ǫ+ I(W ; {Tn
ei , i ∈ [He] \ [K]}|{Tn

ei , i ∈ [K]})

≤ ǫ+H({Tn
ei , i ∈ [He] \ [K]}|{Tn

ei , i ∈ [K]})

(b)

≤ ǫ+
He −K

He
min(nHe, nM)

=⇒ R ≤ min(M,He)

(

1−
K

He

)

,

where (a) follows since, for security, I(W ; {Tn
ei , i ∈ [K]}) ≤

ǫ and (b) is because of Lemma 1 and (5). This concludes the

proof of Theorem 3.

A. Discussion

For some special cases, we can exactly characterize the

capacity (i.e., the upper and lower bounds previously derived

coincide). In particular, these include:

• Networks where the number of edge disjoint paths is

equal to the number of vertex disjoint paths. For these net-

works, the capacity is given by C=min(M,He)(1−
K
He

).
• For networks where the source and the destination have

one transmit and one receive beam each, i.e., M = 1. For

these networks, the capacity is given by C = 1− K
He

.

We next provide two different network examples where: 1) the

upper bound is tight (Example 1) and 2) the outer bound is

not tight, but the lower bound is tight (Example 2).

Example 1: In Fig. 1(a), there are four edge disjoint paths

from the source to the destination, i.e., He = 4. Assume

that M = 2, i.e., both the source and the destination can

transmit and receive from two nodes and K = 1, i.e., Eve

wiretaps any one edge of her choice. We refer to the paths

in Fig. 1(a) as p1, p2, p3 and p4, where they are ordered

from top to bottom (and also represented with different line

patterns). To achieve the outer bound, one can first use p1 and

p4 and then use p2 and p3 to communicate two symbols in

each instance of network use. Thus, on two time instances,

one can communicate 4 messages (3 securely since K = 1).

This gives a secure rate of 3
2 , which matches the outer bound.

Example 2: Fig. 1(b) has also He = 4. However, for

M = 2 and K = 1, it can be shown that the secure capacity

is 1, whereas our outer bound in Theorem 3 is 3
2 . In order to

achieve a secure rate of one, we can select two node disjoint

paths (one through node 1 and the other through node 2) and

use them to communicate. We next derive an outer bound

for the network in Fig. 1(b) that is tighter than the one in

Theorem 3. Assume that, at any time instant t, node 1 transmits

symbol Y
(t)
1 (it can transmit only one symbol even though it

has three outgoing edges) and node 2, transmits Y
(t)
2 . Suppose

that the network is used n times, then by Fano’s inequality,

nR ≤ H(W ) = H(W )−H
(

W |{Y
(t)
i , i ∈ [2], t ∈ [n]}

)

= I(W ; {Y
(t)
i , i ∈ [2], t ∈ [n]})

= I(W ; {Y
(t)
2 , t ∈ [n]})+

I(W ; {Y
(t)
1 , t ∈ [n]}|{Y

(t)
2 , t ∈ [n]})

(a)

≤ ǫ+ n =⇒ R ≤ 1,

where (a) is because, if Eve wiretaps the edge outgoing from

node 2, then I(W ; {Y
(t)
2 , t ∈ [n]}) ≤ ǫ and there are only n

symbols in {Y
(t)
1 , t ∈ [n]}.

IV. DIAMOND NETWORKS WITH NON-UNIFORM PATH

CAPACITIES

For the N -relay diamond network (shown in Fig. 1(c)) with

unit edge capacities, the lower and upper bounds in Theorem 2

and Theorem 3 match (since all the N edge disjoint paths are

also vertex disjoint, namely He = Hv = N ), and thus the

secure capacity equals C = min(M,N)(1− K
N ).

We next consider the case where the edges have non-

uniform capacities. In particular, we assume that for relay

i ∈ [N ], both links connecting to the source and the destination

have capacity Ci, as depicted in Fig. 1(c). In general, even

over traditional networks, the problem of security over unequal

capacity edges is everything but easily solvable [9]. The main

reason is that we need to consider all possible subsets of edges

that Eve may wiretap.

Theorem 4. For the diamond network with M = 1 and N
relays as shown in Fig. 1(c), the secure capacity equals

C = max
fi≥0,∀i∑

i

fi=1







N
∑

i=1

fiCi − max
S⊆[N ]
|S|=K

∑

i∈S

fiCi






. (6)

Proof. Achievability: It is clear that we can transmit
N
∑

i=1

fiCi

symbols from the source to the destination, by using for a

fraction fi of time the path with capacity Ci. Thus, each
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Fig. 1: (a) Network example He = 4 for which the outer bound is tight for M = 2. (b) Network example with He = 4 for

which the outer bound is not tight for M = 2. (c) Diamond network with non-uniform path capacities.

of the N outgoing edges from the source (and similarly

each of the N incoming edges to the destination) will carry

f1C1, f2C2, . . . fNCN packets, respectively. The adver-

sary, in the worst case wiretaps K edges, which carry the

maximum number of packets. Using a similar encryption

scheme as we designed in Section III, ensures a secure rate
[

N
∑

i=1

fiCi −max
S

∑

i∈S

fiCi

]

, where S ⊆ [N ], |S| = K. By

optimizing over the fi’s we get that C in (6) is achievable.

Outer Bound: Since M = 1, at any time instant, the source

can transmit on at most one of its N outgoing edges. We

let {T t
eit

, t ∈ [n]} be the symbols transmitted over n such

instances, where eit denotes the edge used in the t-th instance.

Some of these symbols will flow through e1, some through

e2, and similarly some through eN , where ei is the edge

of capacity Ci outgoing from the source. Let Tei denote

the symbols transmitted on ei in all such instances. Thus,

{T t
eit

, t ∈ [n]} = {Tei , i ∈ [N ]}. Let |Tei | = ni, i ∈ [N ] such

that
∑

i

ni = n. Because of the edge capacity constraints we

have H(Tei) ≤ niCi, ∀i ∈ [N ]. Now, by Fano’s inequality,

nR ≤ H(W ) = H(W )−H(W |{T t
eit

, t ∈ [n]})

= I(W ; {T t
eit

, t ∈ [n]}) = I(W ; {Tei , i ∈ [N ]})

= I(W ; {Tei , i ∈ S})+I(W ; {Tei , i /∈ S}|{Tei , i ∈ S})

(a)

≤ ǫ+ min
S⊆[N ],|S|=K

I(W ; {Tei , i /∈ S}|{Tei , i ∈ S})

≤ ǫ+ min
S⊆[N ],|S|=K

H({Tei , i /∈ S}|{Tei , i ∈ S})

≤ ǫ+ min
S ⊆ [N ]
|S| = K

∑

i/∈S

niCi

= ǫ+
∑

i∈[N ]

niCi − max
S ⊆ [N ]
|S| = K

∑

i∈S

niCi

=⇒ R ≤
∑

i∈[N ]

fiCi − max
S ⊆ [N ]
|S| = K

∑

i∈S

fiCi,

where (a) follows from the security condition and the choice

of S to have the tightest bound, and fi = ni∑
i∈[N] ni

≥

0,
∑

i∈[N ] fi = 1. Optimizing over all such choices of ni, i ∈
[N ], we get that C in (6) is an outer bound on the secure

capacity. This concludes the proof of Theorem 4.

Example 3: Consider a diamond network with N = 4,

and C1 = 3, C2 = 2, C3 = 2 and C4 = 1 and assume K = 1.

If we were to use each path the same number of times, we

would get a secure rate of 5
4 . In contrast, the optimal scheme

from Theorem 4 uses the first path twice, the second and third

three times each, and does not use the last path, achieving a

secure rate of 3
2 . Thus, we see that different from non 1-2-1

networks, here we might need to discard some of the resources.

V. CONCLUSIONS

We explored security over 1-2-1 networks where, since we

need to use beamforming and align beams to activate links,

we cannot use all the underlying graph links simultaneously.

Instead we can use each link for a fraction of time that we

can design. Over such networks, we have shown that we can

achieve a secure capacity that in some cases can be very close

to the unsecure capacity; we have derived upper and lower

bounds for arbitrary unit capacity networks, and exact capacity

characterizations for some special classes of networks.
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